Table of Contents
NASCAR cars and Formula 1 cars are racing cars for a reason, they’re incredibly fast. But really, which car is faster?
Right here, right now, we will answer the hottest question every car racing fan has asked at least once in their life about NASCAR cars and Formula 1 cars. Are NASCAR cars faster than F1 cars? Or is it the other way around?
But before we begin, it is important to know this: The performance of F1 cars and NASCAR cars is severely regulated — but in very different ways. NASCAR highlights the driver’s influence in a car’s overall performance and race outcome, but Formula 1 is all about designing the fastest car and developing the most cutting-edge technology in the chase of marginal improvements.

And keep these in mind: The average NASCAR team’s seasonaloperating budget is around $7 million, with each racing car costing around $1.5 million. While a Formula 1team’s average budget each season, however, goes up around a whopping$300 million, with each car costing around $9 million.
NASCAR teams have around100 members, whereas Formula 1 teams have over 1,000 members.
Now, we will compare the two categories in the following 5 areas:
- Design Dynamics
- Power-to-Weight
- Acceleration and Deceleration
- Aerodynamics
- Race Formats
Which car will emerge in this competition of speeds and adrenaline?
Design Dynamics
When comparing these two race cars and their respective race series’ regulations, it is clear that both are significantly more technologically advanced than our road automobiles, although F1 cars outperform NASCAR in terms of technical innovation.
All NASCAR vehicles have the same chassis (with manufacturer-specific body shells on top), the same 4-speed manual transmissions, the same engine size and power output, and even the same general design for their engines, albeit with some engine parts used to differentiate between the various manufacturers (Ford, Chevrolet and Toyota compete in NASCAR races).
This enables for closer NASCAR racing, more overtaking during races, and for the drivers’ abilities to have a significant impact on the race’s conclusion.
SEE ALSO: Are NASCAR cars all the same? Answers to the 8 Most Interesting NASCAR Questions
NASCARs are closed sedan-style vehicles based on stock cars that weigh a minimum of 3,200 pounds and are powered by a massive 5.8-liter V8 engine that produces 750 horsepower, revs to 9,000 rpm, and is mated to a four-speed manual transmission. These stock cars are made to look a lot like the cars we drive on the road.
Formula 1 race cars are extremely sophisticated in design, with only one goal in mind: to achieve maximum speed.
They’re futuristic, computer-designed race automobiles that don’t resemble anything else on the road.
All of the components of a race car must be manufactured in-house, and the designs are highly guarded trade secrets. Each team’s chassis, steering wheels, suspension elements, motors, clutches, and even items like the front and rear wings are all unique.
The rules of Formula 1 allow team engineers to constantly push the limits of these laws – but not to go too far.
As a result, one team usually dominates a race or a season owing to its technical advantages.
Power-to-Weight
NASCAR engines produce roughly 750 horsepower, while Formula 1 vehicles produce slightly more at 800 horsepower. The top speeds and acceleration statistics should be almost identical. That isn’t the complete picture, though. The weight difference between a Formula 1 and a NASCAR is what distinguishes their performance.
A Formula 1 is half the weight of a NASCAR.
F1 cars have high-revving 1.6-liter 4-cylinder turbocharged V-6 engines that produce 800 horsepower while moving only 1,604 lbs around a racing circuit. A NASCAR weighs 3,250 lbs and is powered by a 5.8-liter naturally aspirated V8 engine with 750 horsepower. F1 cars have a power-to-weight ratio of 0.498 hp/lb, whereas NASCAR vehicles have a power-to-weight ratio of 0.233 hp/lb.
A Formula 1 car could theoretically accelerate from 0 to 62 mph in less than one second, but due to traction loss, that kind of power cannot be transferred to forward motion at extremely low speeds – the car would simply burn up the tyres and barely move ahead.

As speeds goabove 80-90 mph, traction loss decreases, and air rushing over and around the Formula 1 car increases downforce (more on that later), allowing the car to accelerate faster.
Because of the superior power-to-weight ratio, a Formula 1 car can go from 0 to 200 mph in 9 seconds, whereas a NASCAR vehicle can go from 0 to 160 mph in the same amount of time. And, while it isn’t sluggish by anyone’s standards, NASCAR has been thoroughly defeated in this Formula 1 vs. NASCAR match.
Acceleration and Decceleration
A Formula 1 car can accelerate from 0 to 100 mph and back in less than 5 seconds because to its remarkable power-to-weight ratio. In almost every form of acceleration and deceleration comparison, these cars stand out because of their dazzling acceleration and deceleration.
In NASCAR and Formula 1 automobiles, acceleration and deceleration forces play a significant influence in how engineers handle these forces.
These various race cars are designed to not only survive but also to benefit from these forces.
A race car experiences tremendous forces when accelerating and decelerating (typically during braking).
F1 cars generate an acceleration value of 1.45 Gs up to around 125 mph, meaning the driver’s neck and head are pushed rearward by a force 1.45 times stronger than Earth’s gravity.
As speeds exceed 200 mph, this force increases, with drivers experiencing 4.74 Gs on straights, causing their heads to weigh nearly five times heavier. To put these figures into perspective, a rocket launch produces 3 Gs of acceleration.
The aerodynamic wizardry of Formula 1 and NASCAR, as well as their braking systems and tire technology, enable their race cars to cut through the air, stop in extraordinarily small distances, and navigate bends at breakneck speeds.
The most impressive characteristic of a Formula 1 car is its deceleration and braking performance, not its acceleration.
The deceleration force experienced by the driver is 6.78 Gs, which means the driver’s head is nearly seven times its normal weight. In comparison, our ordinary cars barely create 1 G of braking force.
The aerodynamics of a Formula 1 car clings to the road surface so tightly that when the driver gets off the accelerator and coasts, the car will slow down as quickly as most sports cars can at their maximum braking effort.
In Formula 1, the most extreme braking action currently seen is drivers braking from 200 mph to 40 mph to negotiate a tight bend.
With a deceleration of 6.02 Gs, this extreme braking is completed in just 239 feet and 2.5 seconds. In a race, drivers must navigate thatcorner 67 times.
When hurtling around an oval track at 200 mph, a NASCAR car, which isn’t allowed near the same level of aerodynamic aids as Formula 1, can nonetheless generate 3.05 Gs of accelerative force.
On a major oval track like Indianapolis Motor Speedway, Talladega, and Daytona, a NASCAR driver rarely taps the brake pedal of their race car, except when approaching the pit lane or braking to avoid wrecks.
A NASCAR driver must be exceedingly daring to lap at continuously high speeds of 200 mph for 300 laps or more.
The automobile can slow from 200 mph to 0 in around 7.5 seconds when a NASCAR driver stands on the brake pedal.
A NASCAR race oval track, on the other hand, is very different from Formula 1 road circuits in that a NASCAR car does not need to accelerate and decelerate as many times every lap as a Formula 1 car does.
Aerodynamics
The way air moves over, around, and under a race car has an impact on its performance and handling. This is aerodynamics.
The two key areas that aerodynamicists focus on for performance gains in Formula 1 and NASCAR are reducing drag (the resistance a car experiences when travelling through air at high speeds) and improving downforce (the downward force air exerts on a race car’s wheels).
When comparing the aerodynamics of a NASCAR with a Formula 1 car, the aerodynamics of NASCAR automobiles may appear simple to the untrained eye, but it applies the same concepts as Formula 1 in its pursuit of air cheating.

The method aerodynamicists are allowed to deceive the air in Formula 1 and NASCAR, on the other hand, is vastly different.
To be more slippery in the air, NASCAR’s aero technology features low and broad front spoilers, wind tunnel-shaped body shell surfaces, and steeply sloped windscreens, as well as tall rear spoilers to reduce air resistance while optimizing downforce for grip on the back wheels for speed.
The goals of NASCAR’s aerodynamic regulations are to encourage drafting and overtaking in order to increase the on-track car NASCAR racing spectacle.
Each season, a Formula 1 team’s aerodynamicists spend tens of millions of dollars in research and development to push the boundaries of this “black art” in order to reduce their race cars’ lap times by tenths of a second per lap.
With many left and right-hand bends at varying speeds, the aerodynamics of a Formula 1 race car are primarily concerned with downforce for improved cornering grip than reducing drag for higher speeds.
Formula 1 cars are pushed to the ground with such force by aerodynamic downforce that they could hypothetically drive upside down in a tunnel.
The front and rear primary wings of these cars are intricately designed with different profiles depending on the downforce requirements of a particular oval track – for an oval track with many low-speed corners, a car’s aerodynamic wing settings and designs will be very different than for a track with long straights and few slow-speed corners.
Separate blades on the front and rear wings minimize drag on straights while simultaneously increasing downforce when cornering. In fact, when working on the aerodynamics of a Formula 1 race car, every surface, even the driver’s helmet, is taken into account.
The sport’s rules are altered as quickly as Formula 1 aerodynamicists find new ways to trick the air, forcing the aerodynamicists to come up with ever more inventive solutions.
Today, full-width wings function similarly like aircraft wings, but in reverse: instead of providing lift to allow a plane to fly, they press the car lower down onto the ground, improving tire contact with the road.
Since the start of the 2011 Formula 1 season, vehicles have been equipped with a DRS (dynamic rear wing) that can be adjusted (Drag Reduction System). This lets drivers to use DRS on straights, which opens the rear wing and reduces drag considerably, allowing them to improve speed by up to ten miles per hour.
As previously stated, NASCAR’s aerodynamic regulations encourage overtaking, whereas Formula 1’s rules make overtaking more difficult when the DRS system is disregarded; a Formula 1 car’s aerodynamics are built for outright performance, resulting in the quickest race car on the grid.
Race Formats
A NASCAR race normally lasts 3 to 4 hours, with drivers clocking between 400 and 500 miles every race across 350 laps of 1- to 2-mile-long courses.
With only two or four left-hand corners per lap, NASCAR drivers concentrate on maintaining high speeds and braking as little as possible.
Formula 1 races last less than two hours, with cars travelling 185 miles through tight and winding multi-corner courses.
Formula 1 tracks demand drivers be extremely precise in accelerating and braking for roughly 22 bends per lap for an average of 57 laps per race, whereas NASCAR drivers seek to lap at around 200 mph without letting off the pedal.
In NASCAR, a driver’s race wins and world championship wins are emphasized, whereas in Formula 1, the driver’s and team’s championships are equally important.
Races in NASCAR can be compared as marathons, whilst races in Formula 1 are sprints.
A Formula 1 team will invest a lot of time designing racing strategy to assist one of its cars score as many championship points as possible, and colleagues will almost never compete for victory.
In NASCAR, it’s typical for teammates to race each other all the way to the finish line for the win.

Final Verdict
These days, F1 cars accelerate from 0 to 60 miles per hour in about 2.6 seconds and can achieve a top speed of 235mph.
While NASCAR is known for setting packages that limit the speed of their cars for the safety of their drivers and viewers. These cars can achieve the top speed ofjust over or 212mph, accelerating from 0 to 62 miles per hour in 3.5 seconds.
In addition, while F1 cars reach 200mph in just 9 seconds, NASCAR vehicles will only attain 160mph in that same duration.
In short, F1 cars are faster than NASCAR cars in terms of outright top speed. F1 cars will also accelerate faster than NASCAR vehicles.
Formula 1 cars take the crown in this adrenaline-fueled competition.
For more racing action, visit Sportscar Chronicle.
FAQs
Which cars are faster Formula 1 or NASCAR? ›
Formula 1 cars are faster than NASCAR cars.
However, NASCAR and F1 achieve similar speeds during races. The differences in car construction and track configurations between the two series equalize the speeds achieved during competition.
A Nascar car can reach 62mph (100 km/h) in a straight line in around 3.5 seconds with a top speed of around 210 mph. Comparatively, an F1 car can do the zero to 62mph sprint in a second quicker and regularly reaches a top speed of 223 mph or 360 km/h, making it a clear winner.
Are Formula 1 cars the fastest race cars? ›Formula One cars are the fastest cars in the world around a race track, owing to very high cornering speeds achieved through the generation of large amounts of aerodynamic downforce.
What is the difference between Formula 1 and NASCAR? ›The biggest difference between Formula 1 and NASCAR is that the former is a single-seater, more in line with America's IndyCar series, while in NASCAR the drivers race stock cars.
How fast can a NASCAR car go? ›How fast are the NASCAR cars? The average top speed of a NASCAR car is just over 321km/h, or 200mph. Compared to a Formula 1 car, this is quite a bit slower, as they hit speeds of 360km/h (223mph). Indycar – another major American racing series – is faster still, reaching speeds of 380km/h (236mph).
Are Formula 1 cars faster than Indy cars? ›Based solely on top speeds, then IndyCar wins out – Scott Dixon took pole for the 2022 Indy 500 with a 234mph run. The 'usual' top speed for a Formula 1 car is around 205mph, although Valtteri Bottas hit 231mph while slipstreaming at the high-altitude Autodromo Hermanos Rodriguez in Mexico City in 2016.
What is the fastest motorsport in the world? ›The starting point is F1. There's no question that it's the fastest category in the world.
How fast can a F1 car go? ›The fastest speed measured in an F1 qualifying session in 2022 was 351.7km/h (218.5mph) by Kevin Magnussen in Mexico, while Valtteri Bottas currently holds the record for the highest speed in an F1 race, hitting 372.5km/h (231.4mph) in the 2016 Mexican Grand Prix.
How fast is the fastest NASCAR car? ›Bill Elliott's 212-mph performance during qualifying for the Winston 500 at Talladega in 1987 has stood the test of time.
What is the fastest speed ever in NASCAR? ›"The Big One" Speeds in excess of 200 mph (320 km/h) are commonplace at Talladega. Talladega has the record for the fastest recorded time by a NASCAR vehicle on a closed oval course, with the record of 216.309 mph (348.116 km/h) set by Rusty Wallace on June 9, 2004.
What is the fastest race car? ›
Bugatti Chiron Super Sport 300+
No 'fastest cars' list on the internet is complete without a Bugatti of some sort. The 'standard' Chiron, like the Veyron before it, is a mind-blowing piece of engineering, but that doesn't mean it can't be bettered.
IndyCar can hit a top speed of around 236 mph in a race, on low downforce setups at the end of straights and on oval tracks. Basically, an F1 car will cook an IndyCar in Monza. But an IndyCar will outpace a an F1 car in Indianapolis.
Is IndyCar faster than NASCAR? ›At the Indy 500, cars can exceed 240 mph entering Turn 1 or Turn 3. Because the race is on an oval, there is more sustained speed, especially on the ⅝-mile straightaways. Scott Dixon won the pole position with a four-lap qualifying run averaging 234.046 mph. NASCAR Cup cars can top 220 mph on a straightaway.
What is the deadliest motorsport? ›- The Dakar Rally. The Dakar Rally has been one of the most notorious motorsport races since its inception in 1978. ...
- Isle of Man TT. ...
- The Baja 1000. ...
- 24 Hours of Le Mans. ...
- Pikes Peak International Hill Climb. ...
- The Erzberg Rodeo.
Formula 1 Racing
Formula 1 is the most storied and prestigious automotive racing series in the world. It's come a long way since its first race way back in 1950, and a modern F1 car is one of the most technologically advanced automobiles on the planet.
- Hennessey Venom F5: 301 mph (485 km/h)
- Bugatti Chiron Super Sport 300+: 304 mph (490 km/h)
- Koenigsegg Jesko: 300 mph (483 km/h)
- 9ff GT9-R: 257 mph (413.6km/h)
- SSC Ultimate Aero: 256.18mph (412.28km/h)
- Which is your favourite super fast car?
V8 Supercars offer similar performance to the 2022 Formula One cars, and while they don't have the agility, they offer real brute power. The acceleration times are almost the same as Formula One cars, and the top speed is significantly faster, making the series so absorbing for the fans.
Are Formula 1 cars faster than Formula 2? ›Formula 1 cars are approximately 10-15 mph faster than an F2 car. However, this does differ from the top speeds each of the cars can reach. The top speed listed of an F1 car was 231.4mph (372.5kph) recorded by the Williams of Valtteri Bottas in 2016 around the streets of Baku.
Is a F1 car faster than a cheetah? ›Must Read. The cheetah initially raced past ahead of the car, reaching a staggering speed of 62mph (100 km/hour) in just three seconds. But after taking an initial lead, the cheetah is eventually beaten out by the race car, which can travel at the speed of up to 140mph (225 km/hour).
Which is the fastest Formula 1? ›While 372.5km/h (231.4mph) is the fastest speed set during a race, the fastest speed set with an F1 car is much higher. This record is held by Honda, who took their RA106 to the Bonneville Salt Flats in the US, a site famous for top-speed runs, to try and break 400km/h.
What is the speed of Formula 1 car? ›
F1 cars can accelerate from 0 – 60mph in just 2.6 seconds and clock up to 360kmph or 223.6mph. The formula one car reaches high speeds because of its carefully engineered aerodynamics.
What cars are faster than F1 cars? ›- Bugatti Chiron Super Sport 300+ top speed – 490km/h, 304.7 mph.
- Koenigsegg Agera RS top speed – 447km/h, 277.8 mph. ...
- Bugatti Veyron Super Sport top speed – 430km/h, 267.8 mph. ...
- McLaren F1 top speed – 386km/h, 240.1 mph. ...
The starting point is F1. There's no question that it's the fastest category in the world.
What's the fastest NASCAR speed? ›Talladega has the record for the fastest recorded time by a NASCAR vehicle on a closed oval course, with the record of 216.309 mph (348.116 km/h) set by Rusty Wallace on June 9, 2004.
Which animal can run faster than Ferrari? ›Cheetahs (Acinonyx jubatus) are the fastest animals on land, reaching speeds up to 120 km per hour; these incredible cats shatter all records.
What dog can beat a cheetah in a race? ›Fun fact: A Greyhound dog can beat a Cheetah in a long distance race.
Is Ferrari the fastest F1 car? ›But despite the Ferrari F1-75 being the fastest car on raw pace across all of last season and Leclerc pulling out a 34-point championship lead (and 46 over eventual title-winner Max Verstappen) after just three grands prix, the team's title bid dramatically collapsed.